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Short Papers

Extended Cavity Perturb&ion Technique to Determine

the Complex Permittivity of Dielectric Materials

Binshen Meng, John Booske. and Reid Cooper

Abstract-An improved measurement technique to determine the com-
plex dielectric properties of materials has been developed that extends
the validity of the conventional cavity perturbation technique for circular
cylindrical rod-shaped samples in circular cylindrical cavities resonating
in TMo n o modes. The method is particularly useful for the dielectric
characterization of fragile, low-loss materials that are difficult to machhe
to typically required thin dimensions. The method further allows for
multi-frequency measurements using higher-order radial modes and
somewhat alleviates the very small cavity dimensions typically reqnired by
the conventional perturbation techniqne at higher microwave frequencies.
A validity criteriou for the exteuded method is given. Measurements of
the complex permittivity of NaCl single crystals are presented, showing
excellent agreement with theory.

I. INTRODUCTION

A variety of methods of measuring dielectric constants have
been developed in the last several decades [1]. Transmission line
methods have been found to be appropriate for lossy materials. Free

space methods have been used successfully to characterize low-loss
materials over a broad frequency range, but they are sometimes

difficult to implement accurately since they involve a host of special
problems, such as the suppression of unwanted (multiple) reflections,
the launching of a plane wave in a limited space, diffraction from the
edges of the sample, and the need for very large, uniform sheets of
material (especially at low frequencies).

The cavity perturbation technique has been extensively and suc-

cessfully employed to measure the complex dielectric constants of
low-loss materials [2], [3]. These measurements are performed by
inserting a small sample with a certain shape into a microwave
resonant cavity and determining the real part and the imaginary part
of the complex permittivity from the shift of the resonance frequency
and the change of the cavity Q factor, respectively.

The conventional cavity perturbation method may be difficult to
perform in some practical situations, however, due to the requirement
that the sample volume must be very small to produce a negligible
perturbation to the electromagnetic field distribution inside the cavity.
For the case of a circular cylindrical cavity operating in a TMo.o
mode, the sample is usually a thin circular cylindrical rod. In some ap-
plications, the sample materials may be fragile and extremely difficult

to fashion into rods thin enough to satisfy the accuracy requirements
for higher frequencies or higher order modes. Considerable errors
may result from the use of the conventional cavity perturbation
technique with thicker rods.

Manuscript received September 12, 1994; revised August 1, 1995. The
work was supported by the Electric Power Research Institute, the Wisconsin
Alumni Reseach Foundation, and the National Science Foundation through
a Presidential Young Investigator Award.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Wkconsin, Madison, WI 53706–1691 USA.

IEEE Log Number 9414848.

In this paper, we describe an accurate method to determine the
complex dielectric constant of rod-shaped dielectric materials with

larger diameters from the change of the resonant frequency and the
Q factor for circular cylindrical cavities resonating in Tkfo~o modes.

11, MEASUREMENTTHEORY

A. Review of the Conventional Cavity perturbation Theory

The change of a complex eigenfrequency ~ caused by a small

sample having volume Iz, with the complex dielectric constant e and
permeability p in a cavity with volume lTCis [4]

Af=_ Jv, (A6EE;+AWH. H;)d~

.fO Jvc(~EE:+uHH:)d~
(1)

where EO and HO represent electric and magnetic fields respectively
in the empty cavity, and E and H represent the corresponding
quantities in the cavity with the small sample. For the purposes of
further discussion, we will restrict our attention to materials for which
the permeability p is a constant, hence ~p = O. When the sample
is small, it is reasonable in the empty region of the sample-loaded

cavity to approximate E and H by EO and HO. Denoting the value

of E inside the sample by Eint, we have [5]

_ ~ _SL; A’Eint ~ E~d~Aj

fo – 2 ft,c clEo\2ci~ “
(2)

The change of the complex eigenfrequency can be related to the
changes in the resonance frequency j = Re( .f) and the Q factor of
the cavity, through the relation [6]

(3)

where Q and QO are the quality factors of the cavity with and without

the sample, respectively.
Generally the complex dielectric constant c can be written as

e = EO(E’ – je”) (4)

so that

_ _ _,fW, (E’ -1 -j6’’)Eint . Ejd~Aj

fo – 2f1,C lE012dT

_ _ fv,(~’ - lJEmt . E;d~ + ~ fv~ d’Eint ~ E~dT

2 J’,c lwd~ 2JV; \Eopd?- “

(5)

Comparing (5) to (3) yields

Af
e’ = 1 – 2C.0,,V—

and

“’=cnv($~k)
where

Jt> I-?%l’dr
c

‘0”’ = J& E,.,. E;dT “

(6)

(7)

(8)
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For a circular cylindrical cavity resonating in TMono modes with
a cavity radius of a, a cylindrical rod-shaped sample radius of b, and
a cavity height of d, use of the quasistatic approximation leads to [5]

c
_ f; J~(knr)rdr

‘0”’ – f,’ J~(knr)rdr
(9)

where k~ = 27 fn =, .f~ = cxo~ /2xa. and XO~ is the nth zero

of the Bessel function JO.
Equations (6) and (7) are the basic expressions on which con-

ventional cavity perturbation measurement methods are based. The
following is a list of the assumptions made in the derivation of the
two equations:

1)

2)

3)

4)

E % EO in the denominator of (2) (this is equivalent to the
physical assumption that the stored energy in the empty cavity
equals that in the cavity with the sample).
Use of the quasistatic approximation E,n~(r) = EO (r) to
calculate C7c.n$.in (9) for a circular cylindrical cavity resonating
in TMono modes.
In many applications, the calculation of C’conv has been fur-
ther restricted in validity by the additional assumption that
Ein+ (r) H EO(r) = EO takes a constant value throughout

the sample.

Consistent with assumption #l, one assumes that the difference
between the quality factors of the cavity due to the cavity
wall loss with and without the sample is negligible. Note that
assumption #1 implies assumption #4, but not the converse.

B. Extended Measurement Theory

This method involves solving the eigenvalue problem of a di-
electric sample in a resonant cavity. For the circular cylindrical
cavity metioned earlier, solving Maxwell’s equations with boundary
conditions we obtain the dispersion relation

ko Jo(kb) = JO(kOb)NO(kOa)– Jo(koa)~o(kob)
k JI (kbj Jl(kOb)NO(kOa)– JO(kOa)Nl(kOb)”

(lo)

For low-loss materials, this equation can be solved for the resonant
frequencies by an approximation of e s Re(e) = c’. Equation (10)
can be solved for arbitrary complex c. We then obtain the eigenmode
fields

~,1 = .4,Jo(knr) for r < b (11)

and

Ez, = AJo(knb)
JO(kO~a)IVO(ko~r) – NO(kO~a)Jo(k~~r)

JO(kOna)NO(kOn) – lVO(kO~a)JO(konb)

for b<r~a (12)

where k: = W~MOeO C’ and k~. = w: pOeO, The stored energy is
given by

/
It” = ; plzl’ch

(J

Co /——
5 f ,<b

/E,l\2d~+
/ )

lEsz/2d~ . (13)
‘<.<.

The power dissipation PW due to the conduction on the surface of
the cavity wall can be calculated in the conventional manner as
the surface integral (over cavity walls) of IHt 12Rs /2, where Rs
is the surface resistance and Ht = H4 = – (jwefk’ )dE, /dr is
the component of the magnetic field tangential to the surface of the
cavity wall. H~ can be related to the electric field as

(14)

We then obtain the quality factor considering the loss on the cavity

wall and the refractive effect of the sample on the field distribution
but neglecting the effects of sample losses

Qu, +.
w

(15)

Since the power dissipation due to the sample is

P, =
/

;weoe’’lE812d~ (16)
r<b

the total Q factor (with the sample in the cavity) will be

(17)

We next assume that the difference between QW and QO (quality
factor of the cavity without samples) is negligible (we discuss the
impact of this assumption at a later point in the discussion). Then,
with the help of (16) we have

“’=cexac’($-a‘Cexac’(hi)
where

“ fr<btE’112dT+ fb<r<a lEz212d7
C’exact =

~r<~ l~=12d~ “

18)

19)

The constant C7,,act is considered to represent an “exact” calculation
as it employs the general field distribution solutions of (11) and (12),
whose only a priori assumption was that the cavity walls were made
of a good conductor (i.e., ~ >> 1) material. The quality factor of
the empty cavity [7] can be calculated as

(20)

where a is the conductivity of the cavity wall material, Z.. is the n th
zero of the Bessel function JO, and fo. o is the resonance frequency

of the TMono mode.
To illustrate the advantages of the extended method, we describe

its application to a specific experimental system and compare its

accuracy with that of the conventional method. The experimental
configuration employs a circular cylindrical cavity operating in the
first three TMono (n ~ 3) modes. With an inner radius of a =
5.22 cm and a height of 2 mm, the resonant frequencies of these
three eigenmodes are 2.20, 5.05, and 7.91 GHz. A cylindrical sample
rod is inserted through a small hole on one of two flat walls. For
current research purposes, we have been investigating microwave
absorption mechanisms in NaCl single crystals. Therefore, our interest
in these higher order modes is based on a desire to characterize
the sample’s complex permittivity at several different frequencies
without removing the sample from the cavity. However, the brittle
ceramic properties of NaCl make it difficult to obtain thin single
crystal rods with a sample radius less than 2 mm. The combination
of these interests and constraints necessitated the development of the
extended cavity perturbation method.

Comparing the predictions for c’ from resonant frequency shift
by using (10) for the extended method with those by (6) for the
conventional approach (dashed curve) we found that their difference
for the lowest order mode (TiMo 10) is probably negligible but that the
conventional determination of d errs by 10’% for the TMOZO mode
and more than 20970for the TMo.30 mode.
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TABLE I
Sor@ CALCULATEDPARAMETERSATTHEDIFFERENTRESONANTFREQUENCIES

ho (@fz)IQo ] Qw \ cum. IGmt

b (mm)

Fig. 1. The relative difference between constant C for the conventional
perturbation technique and extended methods versus the radius of the sample.

Only one basic assumption has been made in deriving (18) and (19)
for e“, i.e., that the measured empty cavity quality factor QO is to
a good approximation equivalent to the quality factor Q ~ associated
with cavity wall losses in the presence of the sample (but ignoring
the sample losses). This assumption is also made in the conventional
cavity perturbation method.

The quality factors QO and QW have been calculated from (20) and

(15), respectively, and tabulated in Table I for the first three TMono

modes in our experimental cavity (described above) and (in the case

of QW) for a 2 mm radius NaCl rod with an estimated permittivity
(real part) of+ R 5.6 (based on literature values [8]). The difference
between QO and QW is very small (less than 0.5% which is smaller
than the measurement error of 1%). Hence, an accurate determination
of Q Wcan be obtained by measuring QO in the empty cavity. This is
very important because one can never actually measure QW directly.
Table I also includes calculated values for C’conv and C&ct for the
same three eigenmodes. It is apparent that significant errors can be

incurred in obtaining e“ from the conventional calculation due to the

significant error in C.~~. as compared to C’~~~Ct.
The limitations of the conventional method for larger sample radii

and higher order modes is further illustrated in Fig. 1. In this figure
we have plotted the relative error (C..~. — C,+ ) /C.~..t in the
conventional calculation of the integrated-field-distribution constant
as a function of sample radius b in our cavity (again, we assume
c’ = 5.6 for this illustration). For the lowest order mode, the
conventional method provides reasonable accuracy (less than 10’%o
error) for a sample radius up to approximately 3 mm. However,
similar accuracy for the second and third order modes would require
sample radii less than 1.0 and 0.5 mm, respectively. These small
dimensions are prohibitively difficult to achieve with single crystal

specimens of most (brittle) ionic solids.
As mentioned above, the assumption QO ~ Q~ does not impose

significant errors on the determination of /’. The absolute error
resulting from this assumption can be calculated as

A+’ = C....,
(hi)-cex’c’(ha

‘Cexact(k-a (21)

For the cavity dimensions mentioned earlier, this error is less than
1.5 x 10–5 for each mode with a sample radius of b = 2 mm and
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Fig. 2. The experimentally measured 6“ and theoretically predicted d’ in
NaCl single crystals at the frequencies of (a) 2.2 GHz, (b) 4.8 GHz, and (c)
7.4 GHz versus temperature. In all of the plots, o: undoped crystrd (“pure”
crystaf), A: doped crystal, —: theoretical prediction.

is still very small (<2 x 10–5 ) for b up to 3 mm. This amount of
error is much less than the minimum measurable value of .?’ N 10–4
determined by the precision of our experimental measurement system.
Therefore, the assumption that QO H QW, is accurate for a fairly wide

(and practical) range of sample radii.

We now take into account the frequency pulling effect of the
sample insertion hole. The frequency pulling affects Q measurements
and the determination of ? (thus Cexact ) so that lt introduces error

. .

to e“. Employing the correction method developed by Estin [9], the
corrections of/’ for the TMo.o (n = 1,2, and 3) modes are O.12%,
0.44%, and 0.27% for sample radius b = 2 mm, and O.19%, 0.15%,
and 1.8% for b = 3 mm. All of these corrections are much less
than the measurement error of 1%, except the last one which is still
comparable to the measurement error.

III. EXPERIMENTALRESULTS

Experiments have been performed in our system using the extended
measurement theory. In particular, we have measured /’ in a nearly-
pure (i.e., undoped) commercial NaCl single crystal sample and
a second single crystal specimen doped with approximately 250
ppm Ca ‘+ ion impurity concentration. The measurements were



2636 IEEETRANSACTIONSON MICROWAVE THEORY AND TECHNIQUES,VOL.43,NO.11,NOVEMBER 1995

performed over the temperature range of 300700° K for the TMOIO,

TM020, and TM030 resonances. The values of the three resonant
frequencies—2.2, 4.8, and 7.4 GHz-are shifted from the empty cavity

values due to the presence of the sample. Based on the extended
method, we find that the frequency shift data at all three frequencies
yield a value of e’ = 5.64 + 0.05. This result is also in very close
agreement with previous measurements [8].

Equations (18) and (19) have been used to obtain e“ from experi-
mentally measured Q vahtes with and without the sample. The results
are plotted in Fig. 2 along with theoretical predictions [10] based on
a model for microwave absorption that includes ionic conduction

[8], defect-complex-dipole relaxation [8] and multi-phonon quasires-
onance [11] processes. The results of the experimental measurements
and the model predictions are in excellent, consistent agreement
over a very large temperature range and for a significant range of
frequencies.

IV. CONCLUSION

The measurement method described in this paper extends the
validity of the cavity perturbation technique to larger samples and
multiple cavity modes, provided that the difference between Q W

and QO is still negligible in comparison with the measurement
precision. This extended applicability is advantageous for determining
microwave dielectric properties of many important ionic crystalline
solids that are difficult to fabricate into very thin rods. As an
illustration, the method has been successfully used to study the
dielectric properties of NaCl crystals in the microwave frequency
regime.
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Characterization of Microstrip Discontinuities
Using Conformal Mapping and the

Finite-Difference Time-Domain Method

Sunil Kapoor and John B. Schneider

Abstract— Microstrip discontinuities are analyzed using Wheeler’s
waveguide model and the finite-difference time-domain (FDTD) method.
Wheeler’s model employs a conformal transformation to convert a mi-
crostrip into an enclosed wavegnide strncture. This permits the mapping
of a discontinuous microstrip into a dkcontinuous, but enclosed, wave-
gnide. The enclosed waveguide eliminates the difficulties usuatly associ-
ated with analysis of an open domain geometry. The FDTD technique
is then used to calculate the scattering coefficients of the discontinuous
waveguide. The features of this approach are: 1) it yields a smaller
computational domain than that required to analyze the untransformed
geometry; 2) it yields results over a band of frequencies; and 3) it is simple
to implement. Resntts obtained using this scheme show good agreement
with previously published resulta.

I. INTRODUCTION

Many modem microwave and millimeter-wave integrated circuits
guide the transmission of energy using microstrip lines (or asymmet-
rical striplines). The passive components in these circuits are often
constructed from microstrip discontinuities. To analyze and synthe-
size microwave integrated circuits, it is essential to accurately model
the frequency-dependent properties of these discontinuities. The
frequency-dependent properties of tnicrostnp lines, in the absence
of discontinuities, can be obtained from simple empirical formulae
that accurately describe the phase velocities and the characteristic
impedances of the fundamental and higher-order modes [1]. In the
presence of discontinuities, analysis becomes quite cumbersome and
several solution techniques have been proposed. These techniques are
based on any one of a number of methods including mode matching
[2]-[7], finite-difference time-domain (FDTD) [8]-[1 1], method of

moments (MoM) [12]–[16], finite element method (FEM) [17], [18],
and the measured equation of invariance (MEI) [19].

All of the aforementioned techniques have inherent limitations. For
example, solutions based on mode matching can become unwieldy for
even slightly complicated geometries. MoM, FEM, and MEI solutions
can be expensive when results are desired over a broad spectrum.
Direct application of FDTD to these circuits can require the use of
a large attd/or fine mesh which, in turn, requires long computation
times and large amounts of computer memory.

This paper presents a technique that is both simple to implement
and computationally inexpensive. The technique works by converting

the open microstrip structure into an enclosed waveguide using
the conformal mapping technique described by Wheeler [20], [21]
and then using the conventional FDTD technique to analyze the
discontinuities. The conformal mapping reduces the problem to
one with no stray fields which greatly reduces the size of the
computational domain. Since this is a time-domain technique, results
can be obtained over a band of frequencies via Fourier transforms.

However, since the conformrd mapping is only accurate at lower
frequencies, the cost of using this simplified approach is that the
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